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1. Introduction

Flavour symmetries (FS), [1]–[3], are constructed using experimental data from fermion

masses and mixings, with or without imposing a supersymmetric framework. In theories

with supersymmetric FS, there is no general principle which forbids off-diagonal terms in

the soft squared mass or the trilinear mass matrices at the electroweak (EW) scale. Indeed

supersymmetric FS are constructed so as to be independent of the specific mechanism for

breaking supersymmetry. In addition, it is well known that in the minimal supersymmetric
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standard model (MSSM), dangerous supersymmetric contributions to flavour changing pro-

cesses can be avoided assuming flavour diagonal sfermion soft squared mass and trilinear

mass matrices at the EW scale. However, there is no intrinsic reason why off-diagonal terms

should be rotated away using the same unitary matrices which diagonalize the Yukawa ma-

trices. In what follows, FS will always refer to supersymmetric flavour symmetries.

A supersymmetric theory can be considered to be minimal flavour violating (MFV) if

flavour transitions occur only in the charged-current sector and such that can be entirely

determined by the CKM angles [4]. In this sense, it is natural to assume that FS can

be postulated assuming these MFV conditions. If FS are embedded in a supersymmetric

grand unified theory (GUT) [1, 2], the Yukawa matrices have a well defined structure

which contains off-diagonal terms at MGUT and which evolve to the EW scale, reproducing

the observed fermion masses and mixings. However, every possible assumption for the

supersymmetric flavour structure atMGUT can not be compatible with this version of MFV.

Clearly, the running of general sfermion mass squared and trilinear mass matrices generate

angles that cannot be absorbed by the CKM elements. As a consequence, it is often assumed

that one can impose vanishing off-diagonal terms at the GUT scale in the soft squared mass

and trilinear mass matrices [5]. In addition, when the trilinear terms are diagonal, the off-

diagonal terms in the squark mass matrices generated radiatively at the EW scale can

be rotated to the MFV form defined in [6] with the same unitary matrices diagonalizing

the Yukawa matrices. In FS with supergravity [2, 7, 8], the scalar fields breaking such

symmetries (flavons) generate off-diagonal terms at the GUT scale in the supersymmetric

sector that are correlated to those of the fermion sector in a model dependent way. The

available model dependent freedom allows one to construct safe theories at the EW scale.

Rather than determining the possible structure of the Yukawa matrices at the GUT

scale (which is the basis for constructing FS) using only the fermion masses and mixings

of the SM at the EW scale and hoping that the FCNC bounds can be satisfied, here we

propose a bottom up approach for determining the parameters, both in the fermion sector

and in the sfermion sector, of possible flavour symmetries taking into account (i) fermion

masses with their corresponding supersymmetric corrections and mixings at the EW scale

and (ii) measurements or bounds from FCNC experiments.

We will begin by first discussing the flavour violating processes that we will use in our

subsequent analysis in section 2. We will focus primarily on the branching ratio for b→ sγ,

given the current improvement in measuring its experimental value [9, 10]. We discuss its

computation in models without MFV in section 2 as well. In section 3, we briefly discuss

general features of the fermion mass matrices and the importance of considering their su-

persymmetric corrections in order to properly determine their profile at the GUT scale. We

also point out that these theories naturally go beyond the MVF conditions at the EW scale.

In section 4, we employ conditions based on supergravity and FS to determine the form

of the soft squared mass and trilinear mass matrices that we consider. The approach we

take here makes use of an underlying supergravity theory with an effective Kähler potential

from which one can construct the potential and through minimization, calculate the soft

squared masses and trilinear couplings. It turns out that in supersymmetric theories with

non-Abelian FS, the Kähler potential [2] has fewer model dependent parameters than other
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sectors of the theory and hence can be effectively used to impose the size of the off-diagonal

terms of soft squared mass and trilinear mass matrices at MGUT. Using the powerful tools

of supergravity, one can then determine the structure in the supersymmetric sector at

MGUT and test its consequences at the EW scale. The form of the Yukawa matrices and

soft terms are developed in section 5.

In section 6 we present the results of the analysis. We first focus on explaining the

impact of considering non-diagonal Yukawa matrices at the GUT scale on the running of

off-diagonal soft squared masses and trilinear couplings. Even when off-diagonal terms

are taken to be zero at the GUT scale, due to the dependence of the beta functions of

these terms, they will not be zero at the EW scale, but we show that they are well below

current experimental bounds. We then determine the profile of the Yukawa matrices at

the GUT scale when considering their supersymmetric corrections at the EW scale. We

do not include GUT-specific effects and assume that all GUT-scale physics has decoupled

below the GUT scale.

We then go on to determine the sensitivity of BR(b → s γ) on the parameters used

to define the Yukawa couplings at the GUT scale. Although FCNC bounds serve to re-

strict the parameters determining the Yukawa matrices, soft squared matrices and trilinear

couplings we find a region where the contribution to b → sγ is enhanced with respect to

the constrained minimal supersymmetric standard model (CMSSM) with MFV and brings

its value closer to the experimental value, thus relaxing the lower bound imposed on the

universal gaugino mass at large tanβ. We show that this is possible while at the same

time keeping flavour violating parameters in the lepton sector below the bounds imposed

by BR(τ → µγ). Finally, we mention the sensitivity of the determination of the MSSM

spectra on these new parameters.

2. Supersymmetric flavour and CP violation problems in FS

It is well known that the supersymmetric soft Lagrangian, LMSSM
soft

LMSSM
soft = −1

2

(
M1B̃B̃ +M2W̃W̃ +M3g̃g̃

)
+ h.c.

−
(

˜̄QauHuũ+ ˜̄QadHdd̃+ ˜̄LaeHdẽ
)

+ h.c.

−Q̃M2
Q̃
Q̃† − L̃M2

L̃
L̃† − ũM2

ũ ũ
† − d̃M2

d̃
d̃† − ẽM2

ẽ ẽ
†

−M2
Hu
H∗
uHu −M2

Hd
H∗
dHd − (BµHuHd + c.c.) (2.1)

introduces many new parameters that are not present in the SM. There are 106 mass terms,

phases and mixings in the Lagrangian of the minimal version of the supersymmetric SM

(MSSM), which cannot be rotated away by redefining the phases and flavour basis for the

quark and lepton supermultiplets, and which have no counterpart in the SM.

However, most of the parameters involve flavour mixing or CP violation of the type

which is severely restricted by experimental data. In the slepton sector, the most severe

constraint is found when M2
ẽ is not diagonal leading to the decay µ → e γ which could

take place, for example, via a one-loop diagram involving a virtual bino and a wino. The
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current bound on BR(µ → eγ) . 10−11 [12] constrains all of the parameters involved in

the decay and in particular restricts specific terms in the squared masses of the slepton

sector. The current bound on BR(τ → µγ) (. 7 × 10−8) [12] can also impose important

constraints in the slepton sector.

Another example comes from K0 ↔ K
0

mixing where the effective Hamiltonian gets

an important contribution from M2
d̃ 12

via a box diagram involving gluinos. Winos and

binos can also mediate these kind of diagrams. If the squark and gaugino masses are order

1 TeV or less, it is possible to put bounds on the parameters ∆mK and ǫK appearing in

the neutral kaon system effective Hamiltonian which restricts the amount of down-strange

squark mixing and CP violating complex phases that one can tolerate among the soft

parameters. Constraints related to the second and third generations come from the Do,D
o

and Bo, B
o

neutral meson systems, and the decay b → sγ. After the Higgs fields get

vevs, the au, ad and ae matrices defined in eq. (2.1) contribute to off-diagonal squark and

slepton mass squared terms and hence their form is also constrained by FCNC limits. There

are other significant constraints on CP-violating phases from limits on the electric dipole

moments of the neutron and electron and Hg [13].

All dangerous FCNC and CP violation effects in the MSSM can be avoided if one

assumes that in the soft MSSM Lagrangian, eq. (2.1), all the mass matrices are diagonal.

If the sfermion mass matrices are diagonal,

M2
Q̃

= m2
Q̃
1, M2

ũ = m2
ũ1, M

2
d̃

= m2
d̃
1, M2

L̃
= m2

L̃
1, M2

ẽ = m2
ẽ1 (2.2)

then all squark and slepton mixings vanish. Squarks and sleptons with the same electroweak

quantum numbers are degenerate in mass and can be rotated into each other. There are

also supersymmetric contributions to FCNC modulo mixing due to au, ad and ae. Hence

a further assumption usually implemented is that the trilinear terms are proportional to

the Yukawa matrices

au = AuYu, ad = AdYd, ae = AeYe, (2.3)

which ensures that only the squarks and sleptons of the third family can have large scalar

cubic couplings.

Family symmetries attempt to reproduce mixings and masses in the quark and lepton

sector usually by breaking the family symmetry spontaneously with scalar fields, flavons,

and coupling different powers of them to quarks and leptons to reproduce the appropriate

size of Yukawa couplings and hence explain the different hierarchies in fermion masses.

However once these FS are implemented, if the theory is supersymmetric then not only will

fermion mass terms be generated but sfermion mass terms as well and these will induce

FCNC and CP violating effects. These effects then can be used to test different family

symmetries. Unfortunately, unless the mechanism by which supersymmetry is broken is

known, one is forced to make more assumptions, as in the case of the constrained version

of the MSSM (CMSSM) discussed below.

In this paper, we will focus our attention to the constraints imposed by the rare decays

of b → s γ on departures from MFV as the parameters that we consider in this analysis
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are more sensitive to this process than to other observables such as BR(Bs → µ+µ−)

and ∆MBs . As a consequence, we will need to consider a generic method for computing

BR(b → s γ). QCD LO effects have been computed for the running of the chromo-magnetic

Wilson coefficients of the effective Hamiltonian describing the decay BR(b → s γ), from

the EW scale to the decay scale, µb [14]. These coefficients arise as a result of the virtual

exchange of gluinos, neutralinos, charged Higgs bosons and charginos.

The MFV QCD NLO contributions have been computed for the exchanges of charged

Higgs boson and charginos in [4, 15 – 17]. In [18], the MFV MSSM NLO QCD contributions

have been computed. These contributions complete the NLO calculation if the MFV con-

dition is imposed at the electroweak scale. In addition, some beyond leading order effects

(BLO), when the MFV is not assumed, have been calculated in [19].

Thus in a general framework, the only complete calculations of BR(b → s γ) are

available at LO. However, the present value of BR(b → s γ) in the SM at NNLO is

calculated [11]

BR(b→ s γ) = (3.15 ± 0.23) × 10−4 (2.4)

and the present experimental value estimated by the Heavy Flavour Average Group

(HFAG) is [9, 10]

BR(b→ s γ) = (3.55 ± 0.24+0.09
−0.10) × 10−4. (2.5)

Here, we will not need to consider general departures from MFV at the EW scale.

Instead, we are restricting the soft terms at the GUT scale. The expansion parameter of

the u sector, ǫu, is taken to be much smaller than the corresponding parameter in the down

sector, ǫd. In addition, we start with the Yukawa matrix, Yu, diagonal at the GUT scale,

and the departure from MFV will be sensitive mainly to gluinos. We provide the procedure

that we use to obtain BR(b→ s γ) in the framework described below in appendix A.

3. Fermion masses and MFV conditions

When flavour symmetries are constructed, the quark sector is usually fixed by precision fits

of the CKM elements. The lepton sector is similarly determined by the UMNS elements

although only two mixing angles out of the three mixing angles and three phases (one

CKM-like and two Majorana) are known. Thus, the determination of the lepton mixing

matrix is not precise as in the case of the quark sector. Hence it is more common to

construct flavour symmetries by fixing elements of Yukawa matrices in the quark sector

and then adjusting parameters in the lepton sector by relating these to the quark sector

and of course using the available information from leptons. Since only the left handed

states enter into the electroweak mixings, only the Yukawa couplings along and above (or

below, depending on the convention) the diagonal can be determined, so it is necessary to

make an assumption of the Yukawa couplings below (or above) the diagonal in the Yukawa

matrix. It is natural then to classify these choices as symmetric or non-symmetric Yukawa

matrices. For the non-symmetric matrices, however there is less precision in determining
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the elements because the number of parameters is larger than in the symmetric case. The

form of these matrices for the symmetric case is [25]:

Yd sym ∝



≤ ǫ4d ǫ3d ≤ ǫ3d
ǫ3d ≤ ǫ2d ǫ2d

≤ ǫ3d ǫ2d 1


 , Yu sym ∝



≤ ǫ4u ǫ3u ≤ ǫ3u
ǫ3u ≤ ǫ2u ǫ2u

≤ ǫ3u ǫ2u 1


 , (3.1)

while for the non-symmetric [25] case we have:

Yd ∝



≤ ǫ4d ǫ3d ≤ ǫ3d
≤ ǫ3d ≤ ǫ2d ǫ2d
≤ ǫd ≤ 1 1


 , Yu ∝



≤ ǫ4u ǫ3u ≤ ǫ3u
≤ ǫ3u ≤ ǫ2u ǫ2u
≤ ǫu ≤ 1 1


 , (3.2)

with ǫd = O(λc) and ǫu = O(λ2
c), where λc ≈ 0.23 is the Wolfenstein parameter Vus = λc.

The coefficients of Yukawa elements are taken to be O(1). In general, we are free to

independently choose either Y or Ysym for the up-type and down-type sectors. As the

non-symmetric matrices have more parameters, we will restrict our attention here to the

symmetric cases which will be the most restrictive.

The extension of FS to the supersymmetric sector is somewhat arbitrary, independently

of the many complications inherent in the MSSM. The problem rests in the lack of an

underlying theory which relates the parameters of a FS to the supersymmetric parameters.

From a bottom up approach we can tackle this problem by using the structure of the

running of the soft parameters in the MSSM.

The global symmetry of the gauge sector of the SM is given by U(3)5 = SU(3)Q ×
SU(3)U × SU(3)D × . . . , and is broken only by the Yukawa couplings

Yd → 3Q × 3d, Yu → 3Q × 3u, Ye → 3L × 3e. (3.3)

The MFV hypothesis [4] basically constrains this breaking to the fermion sector and im-

poses eq. (2.2) and eq. (2.3) at some low scale to ensure small FCNCs.

Given the dependence of the beta functions of the MSSM soft terms [26] on Y †
f Yf and

YfY
†
f , their running will alter the conditions eq. (2.2) and eq. (2.3) and hence the MFV

scale is set at the EW scale. Thus, within the MSSM, the MFV hypothesis implies a strong

restriction on the scale at which FCNCs are evaluated (e.g. µb):

Q̃M2
Q̃
Q̃† ∝ Q̃

[∑
xn

(
YuY

†
u

)n]
Q̃† ∼ Q̃

[
xoI + x1YuY

†
u

]
Q̃† (3.4)

As a consequence we obtain the same CKM factors for the soft masses as in the SM and

only the flavour-independent magnitude of FCNC amplitudes are modified, for example:

A(b→ sγ) ∝ [(VCKM)∗ts(VCKM)tb] , ∆MBd,s
∝ [(VCKM)tb(VCKM)td,s]

2 (3.5)

Of course, the motivation for the MFV conditions is the strong suppression of BSM effects

in flavour parameters (e.g. SM CKM fits). However, one must check carefully that the form

of Q̃M2
Q̃
Q̃† in fact does not violate that assumption in the sense that it could give a large
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deviation from the MFV conditions. Once the running of Yukawa matrices is included this

can never be the case.

If we put the MFV conditions at the GUT scale for arbitrary initial conditions, this can

result into catastrophic FCNCs at the EW scale. Since the main goal of FS is to restrict

the form of Yukawa matrices, Yf , we then know the form of the terms

Y †
f Yf , YfY

†
f , a†faf and afa

†
f (3.6)

at the GUT scale. We can restrict then the initial conditions of off-diagonal terms of the

soft parameters by the off-diagonal elements of the terms eq. (3.6). The specific way of

correlating this can be obtained with a FS governed by a non-minimal supergravity theory.

The MFV conditions in supersymmetry have been extended to include terms such as

x2YdY
†
d +x3YdY

†
d YuY

†
u +x4YuY

†
uYdY

†
d in eq. (3.4) and a similar structure to other super-

symmetric terms [6]. In this case, gluino contributions to FCNC can compete with those of

chargino and charged Higgs contributions. We present examples below of such cases when

A0 is diagonal at the GUT scale.

4. Flavour symmetries with an underlying supergravity theory

4.1 Trilinear terms

The expansion parameters appearing in the Yukawa couplings, ǫd and ǫu, in flavour sym-

metries arise due to scalar fields, flavons, acquiring a vev, 〈θ〉, and hence breaking the

flavour symmetry at some scale M :

(Yf )ij ∝
(〈θ〉
M

)αf
ij

, (4.1)

For example in SU(3) flavour symmetries, the Yukawa matrices have the form

Yf/(Yf )33 =




0 cf12ǫ
3
fe
iϕf

12 cf13ǫ
3
fe
iϕf

13

cf21ǫ
3
fe
iϕf

21 cf22ǫ
2
fe
iϕf

22 cf23e
iϕf

23ǫ2f
cf31ǫ

3
fe
iϕf

31 cf32e
iϕf

32ǫ2f 1


 , (4.2)

Note that we will be assuming a symmetric form for the Yukawa matrices so that cij = cji
and we drop the subscript sym. As noted earlier, there are only 3 physical CP violating

phases and therefore there are relations between the phases ϕfij in eq. (4.2). This equa-

tion represents the most general parameterization of the Yukawa matrices for quarks and

charged leptons with an SU(3) FS [2, 3]. In any supersymmetric FS, the flavon fields also

couple to the sfermions through the trilinear terms

(af )ijHfQiq
c
j . (4.3)

The generic form of the trilinear coupling matrices in models of supersymmetry breaking

such as supergravity mediation, gauge mediation or anomaly mediation, is of the form

(af )ij = (Yf )ij

(
Af0

)

ij
. (4.4)
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In minimal supergravity A0 is a constant and hence the proportionally in eq. (2.3) is

achieved. Once a family symmetry is considered [2], there are additional contributions to

the trilinear couplings given by derivatives of the Yukawa couplings with respect to the

flavon fields [2, 8], and the trilinear terms can then be written as

(af )ij = (Yf )ij

((
Af0

)

ij
+ kfij

)
, (4.5)

where the kfij are the coefficients produced when taking the derivatives with respect to the

flavon fields times the gravitino mass, kfij ∝ αfijm3/2.

4.2 Soft squared masses

The soft squared mass terms in general scenarios of soft supersymmetry breaking remain

diagonal, although the diagonal terms can be different from each other. However in the-

ories with underlying supergravity and family symmetries, the off-diagonal terms involve

powers of the flavon fields. Of course the diagonal terms are free of such contributions

since the terms in the Lagrangian involving the soft squared masses, eq. (2.1), need to

respect Hermiticity.

Once the flavour symmetry is specified, the Kähler potential can be trivially written as

K =
∑

ψ

ψiψ†j̄Kij̄(ψ), ψ = uR, dR, eR, νR, QL, LL, (4.6)

Kij̄(ψ) = δij̄

[
c(ψ) + d(Xp, ψ)XpX†

p

]
+

θai θ
†
aj̄

M2(θa)

[
c(θa, ψ) + d(θa,Xp, ψ)XpX†

p

]
. (4.7)

Here θk are the flavon fields and Xp are the fields breaking supersymmetry. The coefficients

c and d are a-priori un-related coefficients that can be different for each different flavon

and X field. In abelian flavour symmetries, they are different for each fermion species but

in non-Abelian symmetries the coefficients of one species to another are often related. For

example in SU(3) flavour models, [2, 3, 25], we have structures like

M2 = m2
3/21−m2

0




r1 0 0

0 r2 O
(
〈θ〉2
M2

)

0 O
(
〈θ〉2
M2

)
r3


 , (4.8)

where it is important to stress that due to the vacuum alignment of the flavon fields, [2, 3]

there are no D terms contributing to the soft-squared masses, which often present

dangerous contributions to FCNC [27]. In what follows, we adopt the following form for

the soft-squared masses

M2
f̃

=




M2
f̃ 11

0 0

0 M2
f̃ 22

M2
f̃ 23

0 M2†
f̃ 23

M2
f̃ 33


 , f = Q,u, d, L, e. (4.9)
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5. Determination of the flavour structure at the GUT scale

5.1 General assumptions

Having specified the assumptions that we make based on an underlying supergravity struc-

ture, we next describe how these structures are realized at the electroweak scale and how

we might implement experimental constraints on the structure at the GUT scale. In a

complete theory of FS, the full superpotential and Kähler potential would be specified,

including all the coefficients appearing in eq. (4.1), eq. (4.5) and eq. (4.7). One can then

impose those initial conditions at the GUT scale and run those parameters down to the

EW scale. Lacking a complete theory we can at best begin with the general form of the

Yukawa matrices, eq. (3), and the supergravity assumptions described in the previous sec-

tion at the GUT scale and apply the constraints from FCNC, mainly BR(b → sγ) to limit

the possible values of the parameters of the flavour structure for Yukawa matrices and soft

terms at the GUT scale. To this end, we implement an iterative procedure, like the one

followed in analyses of the constrained MSSM (CMSSM) [28, 29].

In the CMSSM, gaugino masses are assumed to be unified at the GUT scale with value

m1/2, as are the soft scalar masses with value m0 and trilinear couplings with value A0.

Typically, the flavour structure for the scalar masses and trilinear terms is assumed to be

diagonal at both the GUT and EW scales. That is, the running of the off-diagonal terms

is also neglected. With this set of boundary conditions at the GUT scale, we can use

the radiative electroweak symmetry breaking conditions by specifying the ratio of the two

Higgs vacuum expectation values, tan β, and the mass, MZ , to predict the values of the

Higgs mixing mass parameter, µ and the bilinear coupling, B. The sign of µ remains free.

The CMSSM is subject to a number of phenomenological constraints. These include

the LEP limits on the chargino mass: mχ± > 104 GeV [30], on the selectron mass: mẽ >

99 GeV [31] and on the Higgs mass: mh > 114 GeV [32]. The former two constrain

m1/2 and m0 directly via the sparticle masses, and the latter indirectly via the sensitivity

of radiative corrections to the Higgs mass to the sparticle masses, principally mt̃,b̃. The

Higgs limit imposes important constraints principally on m1/2 particularly at low tan β.

Another constraint is the requirement that the branching ratio for b → sγ is consistent

with the experimental measurements [9, 10]. These measurements agree at the 1-σ level

with the Standard Model, and therefore provide bounds on MSSM particles [17], such as

the chargino and charged Higgs masses, in particular. Typically, the b → sγ constraint is

more important for µ < 0, but it is also relevant for µ > 0, particularly when tan β is large.

The constraint imposed by measurements of b→ sγ also excludes small values of m1/2. To

apply the constraint from b→ sγ to the supersymmetric parameter space, we convolve the

experimental result given in eq. (2.5) with the theoretical calculated result and uncertainty.

We add linearly the uncertainty generated from the variation of the input matching scale

to the SM error given in eq. (2.4). We also add linearly the systematic uncertainties in

the experimental result given in eq. (2.5) which could allow central values of b → sγ

significantly outside the range inferred from the statistical error in eq. (2.5). For example,

in the CMSSM, the 95% CL lower limit to m1/2 at high tan β occurs when the calculated

central value of the branching ratio of b→ sγ is as low as 1.9×10−4 [33]. Finally, there are
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regions of the (m1/2,m0) plane that are favoured by the BNL measurement [34] of gµ − 2

at the 2-σ level, corresponding to a deviation from the Standard Model calculation [35]

using e+e− data.

If R-parity is conserved, the lightest supersymmetric particle becomes a cold dark

matter candidate [36] and therefore the model becomes subject to cosmological constraints

on the relic density of dark matter (usually the lightest neutralino) [29]. In the context of

the ΛCDM model, the WMAP only results indicate [37]

ΩCDMh
2 = 0.1042+0.0081

−0.0080 (5.1)

or a 2σ range of 0.0882 – 0.1204 for ΩCDMh
2. This range of densities forces one into

relatively narrow regions in a m1/2,m0 plane when tanβ and A0 are fixed.

In this paper, we will restrict our attention to models with fixed tan β = 50 with

µ > 0. This is done to enhance somewhat the importance of b → sγ constraints. We take

mt = 171.4 GeV and mb(mb) = 4.25 GeV. In the CMSSM with tanβ = 50 and A0 = 0, the

Higgs mass constraint requiresm1/2 & 350 GeV and is similar to the constraint from b→ sγ

for this choice of tan β and A0. At larger values of m1/2, the value of m0 is constrained

to lie in a relatively narrow range to ensure that the co-annihilation of neutralinos and

staus are effective in reducing the relic density to the WMAP range. At very large values

of m1/2, s-channel annihilations of neutralinos through heavy Higgs scalars and pseudo-

scalars control the relic density and larger values of m0 are allowed. The parameter choices

used in the results presented in the next section have been made such that the the relic

density is within the WMAP range in the CMSSM. We also note that to explain the gµ−2

result at the 2-σ level, places an upper bound on m1/2 of approximately 900 GeV. We have

not considered here parameter choices with very large values of m0 typically associated

with the focus point as this part of the plane is not very sensitive to FC processes.

5.2 Form of the Yukawa matrices and soft terms

Our goal in this paper is to test the effect of including off-diagonal terms in the scalar

and trilinear matrices. We will restrict our attention to the mixing between the second

and third generations only (mixing with the first generation will be of higher order in the

expansion parameters ǫu or ǫd as discussed in the previous section). At the EW scale,

we set up off-diagonal entries of Yd using the CKM mixings. We also assume the same

mixings for the charged lepton sector. At the GUT scale we choose the following form of

the Yukawa matrices, which contain 10 parameters:

Yu =




0 0 0

0 cu22ǫ
2
u 0

0 0 cu33


 , Yd =




0 0 0

0 cd22ǫ
2
d c

d
23ǫ

2
d

0 cd23ǫ
2
d cd33


 , Ye =




0 0 0

0 ce22ǫ
2
d c

e
23ǫ

2
d

0 ce23ǫ
2
d ce33


 . (5.2)

In the up sector, we have the masses of the top and charm quarks to determine two of

the three parameters in Yu, thus we have just one free parameter which we choose to be

ǫu. The d and e sectors are linked because we are choosing to generate the mixing in the

lepton sector using the VCKM matrix:

Yd = V ∗
CKMŶdV

†
CKM, Ye = V ∗

CKMŶeV
†
CKM, (5.3)
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where Ŷf are the diagonal matrices of the bare Yukawa couplings at the EW scale. In the

e and d sectors combined, there are seven parameters. We can use the masses of µ, τ , and

the masses of the strange and bottom quarks to eliminate four parameters. An additional

parameter is eliminated by the VCKM matrix, leaving us with two free parameters which

we choose to be ǫd and cd22. Thus choosing

ǫu, ǫd, and cd22 (5.4)

as free parameters at the GUT scale allows us to determine the remaining coefficients

cu22, cu33, cd23, cd33, ce22, ce23, and ce33. (5.5)

The fits are done at the appropriate low energy scale and run up and down iteratively to

obtain a consistent solution given our set of input parameter values.

Although we are choosing ǫu and ǫd as free parameters, their range is restricted by

requiring convergence of the running of the RGEs. Outside this range, Yukawa couplings

tend to diverge while running down to the EW scale. This is reminiscent of the restriction

to tan β in the CMSSM. The allowed range can be estimated from the running of the mass

ratios ms/mb and mc/mt, which are directly correlated to the values ǫd and ǫu respectively

by eq. (38). These ratios increase from the EW to the GUT scale in the MSSM. We

use an analytic form [38] for the ratios of Yukawa couplings derived from one-loop RGEs

for quark mixings and solved in the presence of the heaviest Yukawa generation. In this

approach the evolution parameter, χ is simply related to the evolution of the mass ratios

ms/mb and mc/mt by

χ =

(
MG

MZ

)−y2t /16/π2

≈ 0.8,
(ms/mb)(MG)

(ms/mb)(MZ)
= χ,

(mc/mt)(MG)

(mc/mt)(MZ)
= χ3. (5.6)

Then at MGUT, ǫd ≈
√
ms/mb ≈ 0.1 and ǫu ≈

√
mc/mt ≈ 0.05 and hence the range for

ǫd and ǫu should be restricted to be close to 0.1 and 0.05 respectively.

With the above parameterization of Yukawa matrices then we can parameterize the

soft masses as follows:

M2
Q̃

= M2
ũR

=




1 0 0

0 xu22 xu23ǫ
2
Su

0 xu23ǫ
2
Su xu33


m2

0, M2
d̃R

=




1 0 0

0 xd22 xd23ǫ
2
Sd

0 xd23ǫ
2
Sd xd33


m2

0

M2
L̃

=




1 0 0

0 xν22 xν23ǫ
2
Su

0 xν23ǫ
2
Su xν33


m2

0, M2
ẽR

=




1 0 0

0 xe22 xe23ǫ
2
Se

0 xe23ǫ
2
Se xe33


m2

0

au =




0 0 0

0 zu22ǫ
2
Su 0

0 0 zu33


A0, ad =




0 0 0

0 zd22ǫ
2
Sd z

d
23ǫ

2
Sd

0 zd23ǫ
2
Sd zd33


A0,

ae =




0 0 0

0 ze22ǫ
2
Se z

e
23ǫ

2
Se

0 ze23ǫ
2
Se ze33


A0 (5.7)
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In the spirit of the CMSSM, we can simply choose all of the xfij = 1, ǫSf = ǫf , and set

the trilinear couplings to be aligned with the Yukawa matrices, such that zfij = cfij . We

will make this simplification in sections 6.1 - 6.3.

Later, in section 6.4, we will use the generality obtained when ǫSd, ǫSe, and ǫSu are

assumed to be unrelated to ǫd and ǫu to set constraints on these parameters from b→ s γ.

We can test departures from the CMSSM by effectively taking coefficients xfij different

from unity, but that is clearly beyond the scope of the present study. The matrices are

then simplified to:

M2
Q̃

= M2
ũR

=




1 0 0

0 1 ǫ2Su

0 ǫ2Su 1


m2

0, M2
d̃R

=




1 0 0

0 1 ǫ2Sd

0 ǫ2Sd 1


m2

0

M2
L̃

=




1 0 0

0 1 ǫ2Su

0 ǫ2Su 1


m2

0, M2
ẽR

=




1 0 0

0 1 ǫ2Se

0 ǫ2Se 1


m2

0

au =




0 0 0

0 cu22ǫ
2
Su 0

0 0 cu33


A0, ad =




0 0 0

0 cd22ǫ
2
Sd c

d
23ǫ

2
Sd

0 cd23ǫ
2
Sd cd33


A0,

ae =




0 0 0

0 ce22ǫ
2
Se c

e
23ǫ

2
Se

0 ce23ǫ
2
Se ce33


A0 (5.8)

Note that for this case the trilinear couplings
(
∼ zfijǫ

p
f

)
will not be exactly aligned with

the Yukawa couplings but will still be proportional to them and effectively we are taking

zfij = cfijǫ
2
Sd/ǫ

2
d for (i, j) 6= (3, 3) and zf33 = cf33.

6. Results

To get a feel for the range of parameter values of the coefficients cfij and ǫu and ǫd we first

consider a specific point in the susy parameter space with m1/2 = 520 GeV, m0 = 330 GeV,

A0 = 0 , and tanβ = 50. We also consider a case with A0 = −m1/2 and we restrict our

attention to µ > 0. In the CMSSM, this point corresponds to one lying on the WMAP co-

annihilation strip [29] so the that the relic density lies within the WMAP preferred range.

The Higgs mass is suitably large (& 116 GeV), the susy contribution to b→ sγ is small, and

the contribution to (g − 2)µ accounts for the discrepancy between theory and experiment.

The goal of the analysis is to constrain the allowed parameter space both from flavour

changing neutral currents and from the parameters determining the appropriate values of

fermion masses at electroweak scale. As noted earlier, our free parameters are cd22 and

(ǫu, ǫd). We have set cd22 = 0.7. The other cfij are then fixed by the low energy fermion

masses and mixings. Since we expect the parameters ǫu and ǫd to describe the structure

of the Yukawa matrices, we do not want to rely on fine tuned coefficients cfij . Indeed, Vcb

would preclude a value of cd23 as small as 0.1 if ǫd is also taken of order 0.1.
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6.1 Running of off-diagonal soft parameters

Since we work in the context of the CMSSM, it is important to first establish the degree

of running of our off-diagonal terms between the GUT and EW scales. The 1-loop RGE’s

for (M2
Q̃
)ij , (M2

d̃R
)ij and ad are given by1 [26]

β
(1)

M2
Q̃

=
(
M2
Q̃

+ 2M2
Hu

)
Y †
uYu +

(
M2
Q̃

+ 2M2
Hd

)
Y †
d Yd +

[
Y †
uYu + Y †

d Yd

]
M2
Q̃

+2Y †
uM

2
uYu + 2Y †

dM
2
dYd + 2a†dad

−32

3
g2
3M

2
3 − 6g2

2M
2
2 − 2

9
g2
1M

2
1 +

1

5
g2
1S

β
(1)

M2
d̃

=
(
2M2

d̃
+ 4M2

Hd

)
YdY

†
d + 4YdM

2
Q̃
Y †
d + 2YdY

†
dM

2
d̃

+4ada
†
d −

32

3
g2
3 |M3|2 −

8

9
g2
1 |M1|2 +

2

3
g2
1S

β(1)
ad

= ad




Tr
(
3YdY

†
d + YeY

†
e

)
+ 5Y †

d YdY
†
uYu −

∑

a=1,2,3

uag
2
a






+Yd




Tr
(
6adY

†
d + 2aeY

†
e

)
+ 4Y †

d ad + 2Y †
u au − 2

∑

a=1,2,3

uag
2
aMa




 (6.1)

where ua = 7/9, 3, 16/3 are numerical coefficients, ga are the gauge couplings and Ma

are the masses of the gauginos. We have not shown (though we do include them in our

calculations) the beta functions for M2
ũ , M

2
L̃
, and M2

ẽ . β
(1)

M2
ũ

is similar to β
(1)

M2
d̃

with the

interchange u ↔ d and different contributions from the gauginos. The running in the ũ

sector is in general small due to our assumption that the expansion parameter in the up

sector is small in comparison with that of the down sector. The running of M2
L̃

(M2
ẽ ) is

similar to that of M2
Q̃

(M2
d̃
) due to their common dependence on ǫu (ǫd). Here, we will

describe the running of (M2
Q̃
)ij , (M2

d̃R
)ij and ad, but the running for (M2

L̃
)ij , (M2

ẽR
)ij and

ae, has a similar behaviour.

Yd is not diagonal at the GUT scale, however, Yu is, and although at two loops the

evolution of Yu produces off-diagonal elements we neglect them here, due to the smallness

of ǫu. Therefore, the most important contributions to the beta functions of the off-diagonal

terms of the the soft squared masses in eq. (6.1) are found in the terms

(
M2
Q̃
Y †
f Yf

)

ij
,
(
Y †
f YfM

2
Q̃

)

ij
,
(
Y †
fM

2
f̃
Yf

)

ij
,
(
a†dad

)

ij
(6.2)

For the off-diagonal trilinear terms, important contributions arise from the terms:

(
adY

†
d Yd

)

ij
,
(
YdY

†
d ad

)

ij
,
(
YdTr

(
adY

†
d

))

ij
,
(
YdTr

(
aeY

†
e

))

ij
. (6.3)

1Note that we employ a sign convention for a which differs by a relative sign from that of [26].
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Of course we need only consider the case for f = d and (i, j) = (2, 3). Expressing Yd in

terms of ǫd, the contribution to the beta functions of the soft squared masses is
(
M2
Q̃
Y †
d Yd

)

23
=
[
cd23c

d
33ǫ

2
dM

2
Q̃ 22

+ cd33
2
M2
Q̃ 23

]
→ cd23c

d
33M

2
Q̃ 22

ǫ2d = cd23c
d
33ǫ

2
dm

2
0

(
Y †
d YdM

2
Q̃

)

23
=
[(
cd22

2
+ cd23

2
)
ǫ2dM

2
Q̃ 23

+ cd23c
d
33M

2
Q̃ 33

]
ǫ2d → cd23c

d
33M

2
Q̃ 33

ǫ2d = cd23c
d
33ǫ

2
dm

2
0

(
Y †
dM

2
f̃
Yd

)

23
=
[
cd22c

d
23M

2
d̃ 22

+ cd23
2
M2
d̃ 32

]
ǫ4d +

[
cd22c

d
33M

2
d̃ 23

+ cd23c
d
33M

2
d̃ 33

]
ǫ2d

→ cd22c
d
23M

2
d̃ 22

ǫ4d + cd23c
d
33M

2
d̃ 33

ǫ2d ≃ cd23c
d
33ǫ

2
dm

2
0(

a†dad
)

23
= zd23z

d
33ǫ

2
dA

2
0 → 0 (6.4)

where we have kept only like terms to lowest order in ǫd. The expressions on the right-hand

side of the arrows are the remaining non-zero contributions when the off-diagonal terms in

eqs. (2.2) and (2.3) are set to zero. From eq. (5.7) we can see that since M2
Q̃ 22

≫M2
Q̃ 23

,

even when the off-diagonal terms of eq. (6.2) are set to zero, the leading terms ∼M2
Q̃ ii

ǫ2d,

of eq. (6.4) remain, except for the term a†dad, which vanishes. For the contribution to the

beta functions of the trilinear couplings we have
(
adY

†
d Yd

)

23
=
∑

l

[
zd2lǫ

2
d

]
A0

(
Y †
d Yd

)

l3
→ zd22c

d
23c

d
33ǫ

4
dA0

(
YdY

†
d ad

)

23
= zd23ǫ

2
dA0

(
Y †
d Yd

)

22
+ zd33A0

(
Y †
d Yd

)

23
→ zd33c

d
23c

d
33ǫ

2
dA0

[
YdTr

(
adY

†
d

)]

23
= cd22c

d
23ǫ

6
dz
d
22A0 + 2cd23

2
ǫ6dz

d
23A0 + cd23c

d
33ǫ

2
dz
d
33A0

→
[
cd22c

d
23ǫ

6
dz
d
22 + cd23c

d
33ǫ

2
dz
d
33

]
A0

[
YdTr

(
aeY

†
e

)]

23
= ce22c

d
23ǫ

6
dz
e
22A0 + 2cd23c

e
23ǫ

6
dz
e
23A0 + cd23c

e
33ǫ

2
dz
e
33A0

→
[
ce22c

d
23ǫ

6
dz
e
22 + cd23c

e
33ǫ

2
dz
e
33

]
A0 (6.5)

In eq. (6.5) we see again that when the off-diagonal terms of the trilinear couplings ad,e are

set to zero the leading terms of the original expression do not vanish.

In figure 1, we show the running of the off-diagonal soft masses. We begin by discussing

the case for A0 = 0. Here, we have chosen ǫd = 0.1 and ǫu = 0.05 as well as cd22 = 0.7

which will be used throughout this section. The running of the soft masses in this case

is shown by the dashed (when the off-diagonal terms of the soft squared masses are set

to zero at the GUT scale) and solid (when they are non-zero) blue curves. In the first

panel of figure 1, we show the running of M2
Q̃ 23

as a function of the renormalization scale

Q. When the off-diagonal terms are turned off, the running starts at M2
Q̃ 23

= 0 as seen

by the dashed (blue) curve. The dominant contributions to the running of are suppressed

by ǫ2d and proportional to cd23c
d
33. As a consequence, the running of M2

Q̃ 23
is relatively

significant. When the off-diagonal elements are turned on at the GUT scale, the initial

value for M2
Q̃ 23

is about (16.5 GeV)2 (as seen more clearly in panel b for M2
ũ 23). On this

scale, the difference in the running is relatively minor as all of the leading contributions to

these expressions are the same. As a result the evolution of these terms does not change

drastically according to the different initial conditions at the GUT scale.
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Figure 1: The running of the parameters of the soft squared masses a) M2

Q̃ 23
, b) M2

ũ 23, c) M2

d̃ 23
,

and d) M2

L̃ 23
when off-diagonal terms are turned off (dashed blue) and on (solid blue) at the GUT

scale with A0 = 0. Here m1/2 = 520GeV, m0 = 330GeV, ǫd = 0.1 and ǫu = 0.05. Also shown is the

running when A0 = −m1/2 and m0 = 370GeV. The dot-dashed (red) curve corresponds to the case

where off-diagonal terms are turned off at the GUT scale and the dotted (red) curve corresponds

to the case where they are turned on.

Also shown in figure 1a is the analogous running when A0 6= 0. Here we show the

running for the specific choice A0 = −m1/2 = −520 GeV. Note that for this case, we have

adjusted m0 to 370 GeV in order to maintain the correct relic density. When A0 6= 0, the

evolution of soft squared masses will have contributions from the terms a†faf when the off-

diagonal terms start with a non-zero value at the GUT scale. As the dominant contribution

to the running of M2
Q̃ 23

comes from the gaugino (mostly gluino) terms in eq. (6.1), a†faf
tends to lower (slightly) the running as seen by the dash-dotted (when off-diagonal terms
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Figure 2: As in figure 1 for the running of a) ad23 and b) ae32.

are turned off at the GUT scale) and dotted (when they are turned on) (red) curves.

In contrast, in panel b) of figure 1, we show the running of M2
ũ 23. The beta function

for M2
ũ 23 is determined by Yu or au rather than Yd and as a consequence the running is

minimal. As expected from the beta functions, the running of M2
d̃ 23

is also significant as

seen in panel c). We also show the running of M2
L̃ 23

in panel d). As noted earlier, the

beta function for M2
L̃ 23

is similar to that of M2
Q̃ 23

though the running is smaller due to

the lack of gluino contributions.

Although the running of (M2
d )23 is the most significant of those shown in figure 1, in

the computation of BR(b → s γ), discussed below, this effect is sub-dominant. The reason

is that the contributions from the charged Higgs boson and the charginos is much more

important than the contribution from gluinos. We can see from eq. (B.16) that only the

diagonalization matrix of M2
ũ , K

u, is relevant for the computation of the magnetic Wilson

coefficients where the charginos and charged Higgs boson are the virtual particles. The

diagonalization matrix of M2
d̃
, Kd, is relevant only for the gluino contributions. This is

because they enter into the computation of chromo-magnetic Wilson coefficients arising

from the virtual exchange of gluinos [14].

For A0 = 0 the renormalization group equations generate a contribution for ad of order

−Yd
∑

a uaMa at one loop. In addition, when A0 = 0, the running of ad is independent

of whether off-diagonal terms of soft parameters are set to zero at the GUT scale. In

figure 2, we show the running of ad23 in panel a) and ae23 in panel b). The solid (blue)

line corresponds to the case where A0 = 0. In both cases the running is very slight.

When A0 6= 0, the first term of the one loop beta function of ad will now be relevant.

However since the off-diagonal terms (af )ij are suppressed with respect to the diagonal

terms (af )ii as (af )ij/(af )ii = ǫ2d, for i, j = 2, 3 and f = d, e, the difference will be small.

The running of ad23 and ae23 with A0 = −m1/2 is also shown in figure 2.
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In order to determine the possible magnification of the flavour violating parameters at

the EW scale given the GUT scale initial conditions eq. (5.7), it will be useful to define

the parameters,

(δf,XY )ij =
(M2

f,XY )ij√
(M2

f,XX)ii(M
2
f,Y Y )jj

(6.6)

where (M2
f,XY )ij , X,Y = L,R are the running soft sfermion parameters. In order to give

meaning to the flavour violating parameters, we must work in the basis where fermion

masses are diagonal. The details of this rotation are given in appendix B (see: eq. (B.6)).

In the definition of the δ’s, all soft masses will be assumed to be in the rotated basis.

In figure 3a, we show the running of M2
d̃ 23

in the rotated basis. Since M2
d̃

depends

primarily on (Y †
d Yd)23 ∝ ǫ2d (if ǫ2u ≪ ǫ2d) when the transformation to the rotated basis is

performed, we expect that the value of M2
d̃ 23

will be reduced due to its alignment with

the Yukawa matrix Yd. Additionally, for A0 = 0, when off-diagonal terms are turned off,

there is no contribution from the trilinear terms to the running of soft squared masses, as

shown in eq. (6.4). Thus, when going to the basis where Yukawa couplings are diagonal

(|Ŷf |2 = V fT
R Y †

f YfV
f∗
R ), the contributions of the form Y †

f Yf and YfY
†
f will also be rotated

away to a large extent. We can see then in figure 3a, that this is indeed the case for

A0 = 0, ǫd = 0.1 (blue-dashed line). When A0 6= 0, we see from eq. (6.4) that we have

an extra contribution to the running of M2
d̃

from the trilinear terms, which cannot be

greatly reduced when going to the rotated basis. When off-diagonal terms are turned on,

for the case of A0 = 0 we expect a greater effect in the running of M2
d̃

than in any of

the other soft squared masses, because (along with M2
ẽ ) this is the only matrix that is

sensitive to the parameter ǫd at the GUT scale. In figure 3a, the (green) long dashed curve

corresponds to ǫd = 0.16 while the (blue) solid curve for ǫd = 0.1. Comparing the ratio

0.12/0.162 = 0.39 we see that in the un-rotated basis (figure 1c) the difference between the

two initial conditions for M2
d̃

will be 39% and is increased to about 50% in the rotated

basis because the diagonalization matrix also contains the parameter ǫ2d.

The sensitivity to ǫu in the running of M2
d̃

is very small as a result of the difference be-

tween ǫ2d and ǫ2u. The sensitivity to cd22 in the running of the soft squared masses comes from

the terms of the form YfY
†
f and afa

†
f , however as we will describe in the next section, the

elements of Yf ij are adjusted to reproduce the correct fermion masses at the EW scale for

a given choice of cd22 and ǫd. For cd22 = 0.7 and ǫd = 0.1, one is able to reproduce the correct

value of ms(EW). Similarly, for cd22 = 0.5 and ǫd = 0.12 we are also able to obtain the cor-

rect value for ms(EW). Indeed, the product cd22ǫ
2
d at the GUT scale is very similar. There-

fore, the quantities YfY
†
f are more or less fixed by this requirement for different choices of

cd22 and ǫ2d and as a result the running of M2
d̃

will not be very sensitive to these changes.

In the remaining panels of figure 3, we show the flavour violating parameters (δq,XX)23,

(δd,XY )23, and (δe,XX)23 for our test point (m1/2,m0, A0) = (520, 330, 0) GeV and

(ǫd, ǫu) = (0.1, 0.05). The curves for these cases are all shown as solid (blue). Off-diagonal

terms at the GUT scale are turned on for all curves in panels b) - f). For comparison, we

show the case with non-zero A0, ie., (m1/2,m0, A0) = (520, 370,−520) GeV. This case is
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Figure 3: In panel a), the running of M2

d̃ 23
in the rotated basis as in figure 1. Also shown by the

(green) long-dashed curve is the case ǫd = 0.16 with A0 = 0 and off-diagonal terms turned on at the

GUT scale. In the remaining panels, the running of squark flavour violating parameters (δq,XX)23
(b-d), (δd,XY )23 (e), and (δe,XX)23 (f) for (m1/2,m0, A0) = (520, 330, 0)GeV, with tanβ = 50,

ǫd = 0.1 and ǫu = 0.05 shown by the solid (blue) curves. In panels b) -f), off-diagonal terms are

on at the GUT scale. Also shown by the dashed (blue) curves are the results for A0 = −m1/2 with

m0 = 370GeV. The (red) dotted and dash-dotted curves show results for ǫd = 0.16 with A0 = 0

and A0 = −520GeV respectively.

shown by the dashed (blue) curves. In addition for both A0 = 0 and A0 6= 0, we show the

sensitivity of the running to ǫd. The (red) dotted and dash-dotted curves correspond to

these cases respectively, where we have chosen ǫd = 0.16.

6.2 Determination of coefficients of Yukawa matrices

In this subsection, we will determine the values and sensitivities of the quantities

cd23, cd33, ce22, ce23, ce33, cu22 and cu33 (6.7)

to the variation of ǫd and ǫu for a given value cd22. For now, we continue to use our

example based on the point (m1/2,m0, A0) = (520, 330, 0) GeV, tan β = 50. As a result

of the small differences in the running of the off-diagonal terms of soft parameters when

we choose different initial conditions at the GUT scale, the Yukawa parameters are not

really sensitive to this difference. In this section, we will only consider cases where the
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Figure 4: Yukawa parameters, cfij of the d, e and u sectors for the supersymmetric point

(m1/2,m0, A0) = (520, 330, 0)GeV, tanβ = 50 and cd22 = 0.7. In panel (a) we show cdi3 for i = 2, 3

as labeled as a function of ǫd for fixed ǫu = 0.05. In panel (b) we show ceij for ij = 22, 23, 33 as

labeled as a function of ǫd for fixed ǫu = 0.05. Finally in panel (c) we show cuii for i = 2, 3 as labeled

as a function of ǫu for fixed ǫd = 0.1.

off-diagonal elements are turned on at the GUT scale. These parameters are, however,

sensitive to variations in ǫd, ǫu and cd22.

In figure 4, we plot the relevant cfij versus the appropriate ǫf for cd22 = 0.7. There is

little sensitivity to ǫd or ǫu for the 33 components of the Yukawa matrices which are well

fixed by the low energy fermion masses. In contrast, the 22 and 23 components can be

sensitive to ǫd and ǫu even within their limited range of variation.

In figure 5, we show the dependence of two of the Yukawa parameters, cd23 and cd33, to

our choice of the supersymmetric point as a function of ǫd. In addition to our original test

point (shown here as the dotted curves), we consider (m1/2,m0, A0) = (160, 630, 0) GeV

shown by the dashed curves, and (m1/2,m0, A0) = (1240, 910,−1240) GeV shown by the

solid curves. In all three cases, we have chosen tan β = 50. In each case, the value of m0 was

chosen so as to obtain a relic density compatible with WMAP. In the latter case, we chose

A0 = −m1/2. The dependence of the parameters of Ye on the change of (m1/2,m0, A0) is

similar though less pronounced and the dependence of the parameters of Yu is very small.

Given the parameterization of the Yukawa matrix Yd in eq. (5.2), the choice of cd22 is

directly correlated to the allowed value of ǫd given the value of ms/mb(MGUT):

ms

mb
(MGUT) ∼ (Yd)22

(Yd)33
− (Y 2

d )22 + (Y 2
d )33

2(Y 2
d )33

=
cd22
cd33

ǫ2d −O(ǫ4d), (6.8)

which must be in the range ∼ (0.01, 0.03) at MGUT. Hence for different choices of cd22,

assumed to be O(1), we have the following allowed ranges of ǫd:

cd22 = 0.5 → ǫd ≃ [0.10, 0.12]

cd22 = 0.7 → ǫd ≃ [0.085, 0.10]

cd22 = 1.0 → ǫd ≃ 0.08. (6.9)
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Figure 5: As in figure 4, we plot (a) cd23 and (b) cd33 for three different choices of (m1/2,m0, A0). The

bottom curves (dotted) correspond to (m1/2,m0, A0) = (520, 330, 0)GeV, the lines in the middle

(dashed) to (m1/2,m0, A0) = (160, 630, 0)GeV and the lines at the top (solid) to (m1/2,m0, A0)

= (1240, 910,−1240)GeV.

Yukawa parameters cfij
cd22 cd23 cd33 ce22 ce23 ce33
0.5 [0.6, 0.9] 0.3 [1.2, 1.7] [1.3, 1.7] 0.5

0.7 [0.9, 1.3] 0.3 [1.7, 2.4] [1.9, 2.4] 0.5

1.0 1.6 0.3 3.0 3.1 0.5

Table 1: Values of the Yukawa parameters for different choices of cd22 for the supersymmetric point

(m1/2,m0, A0) = (520, 330, 0) GeV.

As a consequence the values of (Yd)ij and (Ye)ij are different for each case. In table 1, we

show the allowed ranges of the Yukawa parameters according to the allowed range for ǫd
in each case.

To further compare how the determination of the appropriate Yukawa parameters at

the GUT scale depends on the chosen supersymmetric parameters we show in figure 6, the

values of cfij as a function of the the gaugino mass, m1/2. Here A0 = 0 and tan β = 50.

For each value of m1/2, m0 is adjusted to insure the correct relic density of neutralinos. As

one can see the dependence on the supersymmetric model is rather minimal.

Finally, we would like to emphasize the importance of taking into account the su-

persymmetric corrections to the fermion masses for the proper determination of Yukawa

parameters at the GUT scale. From [39], we find that for large tan β, the supersymmet-

ric corrections to the mass of the bottom can be as large as 30%, as it is for the case of

tan β = 50. We can express the relation between the masses of the fermions at a certain

scale Q, containing the supersymmetric corrections, and the masses of fermions at the same
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Figure 6: The coefficients of the Yukawa matrices plotted versus m1/2 for ǫd = 0.1, ǫu = 0.05 and

cd22 = 0.7. In panel (a) we show cdi3 for i = 2, 3 as labeled. In panel (b) we show ceij for ij = 22, 23, 33

as labeled. Finally in panel (c) we show cuii for i = 2, 3 as labeled.

scale as given by the SM through:

mS
k (Q) = mSM

k (Q)gSk (Q), k = t, b, c, s. (6.10)

Here mSM
k (Q) are the SM values at Q, including the corrections from gluons. A good ana-

lytical approximation to the factors gSk (Q) is given in [39]. For example, for the top quark,

this can be expressed as gSt (Q) = 1 + ∆mt/mt, where the most important contributions

to ∆mt/mt comes from top squark/gluino loops. In figure 7, we plot the numerical values

of gSk (Q) for k = t, b, s, as a function of m1/2 for tanβ = 50 and for the choice of Yukawa

parameters (cd22, ǫd) = (0.7, 0.1). These corrections include the corrections at one loop from

squark/gluino loops, charginos and neutralinos. We can see that, in fact, for mb these cor-

rections are about 30%, while for ms, they can be up to 14%. For mt, the corrections are

within 11%. The corrections for mc, though included are not shown as they are very small.

The supersymmetric corrections change the profile of Yukawa matrices at the GUT

scale. A SM analysis [2] determined the values for Yd (for symmetric matrices) as follows:

(Yd)22
(Yd)33

= 0.152 = 0.0225,
(Yd)23
(Yd)33

= 1.3
(
0.152

)
= 0.0293. (6.11)

If we take the values of the Yukawa parameters for
(
cd22, ǫd

)
= (0.7, 0.1) from table 1, we have

(Yd)22
(Yd)33

= 0.025,
(Yd)23
(Yd)33

= 0.045. (6.12)

Since cd22 is an input to our analysis, we are basically adjusting the value of (Yd)22/(Yd)33,

at the GUT scale, thus there is no surprise in the similar values for this ratio in both

cases. What is interesting is the change in the off-diagonal parameter (Yd)23/(Yd)33, since

this off-diagonal term is crucial when constructing a specific flavour symmetry.

It is important to emphasize the difference between the structure of the Yukawa ma-

trices at the GUT and EW scales. Whilst at the GUT scale they can be written in terms
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Figure 7: MSSM corrections at one loop to the masses of mt (solid blue line), mb (dotted green

line) and ms (dashed red line).

of the expansion parameter ǫ2d and the prefactors cfij , at the EW scale this is not longer

the case. However if the prefactors cfij are indeed to be explained by a specific FS then

the result at the EW can be expressed as a series expansion in terms of ǫf and the same

coefficients. For example, we can express the Yukawa matrices normalized to the elements

(Yf )33 at the GUT scale. The numerical value using cd22 = 0.7, ǫd = 0.1 and ǫu = 0.05 is

Yd
(Yd)33

=




0 0 0

0
cd22
cd33
ǫ2d

cd23
cd33
ǫ2d

0
cd23
cd33
ǫ2d 1


 =




0 0 0

0 0.025 0.033

0 0.033 1




→




0 0 0

0 0.07 0.04

0 0.04 1


 =




0 0 0

0
(
cd22
cd33

+ 4.49
)
ǫ2d

cd23
cd33
ǫ2d + 7ǫ3d

0
cd23
cd33
ǫ2d + 7ǫ3d 1




Ye
(Ye)33

=




0 0 0

0
ce22
ce33
ǫ2d

ce23
ce33
ǫ2d

0
ce23
ce33
ǫ2d 1


 =




0 0 0

0 0.038 0.036

0 0.036 1




→




0 0 0

0 0.05 0.04

0 0.04 1


 =




0 0 0

0
(
ce22
ce33

+ 1.25
)
ǫ2d

cd23
cd33
ǫ2d + 3.9ǫ3d

0
cd23
cd33
ǫ2d + 3.9ǫ3d 1




Yu
(Yu)33

=




0 0 0

0
cu22
cu33
ǫ2u 0

0 0 1


 =




0 0 0

0 0.005 0

0 0 1
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→




0 0 0

0 0.01 0

0 0 1


 =




0 0 0

0
(
cu22
cu33

+ 2
)
ǫ2u 0

0 0 1


 (6.13)

where the effect of running to the EW scale is given to the right of the arrows.

6.3 Effects on b→ s γ

We have seen that a good choice of Yukawa parameters was cd22 = 0.7 and ǫd = 0.1,

ǫu = 0.05, thus we present the analysis on the sensitivity of b → s γ on ǫd centered on

those parameter values. As we explain in appendix A due to the hierarchy of ǫ2u ≪ ǫ2d, we

expect that the main departures from MFV come from the gluino contributions, entering

through the magnetic Wilson coefficients due to the diagonalisation of the soft squared

matrices in the d̃ sector, eq. (5.7). In figure 8 we show our calculation of b → s γ as a

function of m1/2 when the running of the parameters of the second family have not been

considered (dashed blue curve). For comparison, we also show the same result when the

running of both the 2nd and 3rd generations are included for A0 = 0 (solid red curve) and

when A0 = −m1/2 (dotted black curve). As before, for each value of m1/2, m0 is chosen so

as to obtain the WMAP value for the relic density of neutralinos. Note that the inclusion

of the 2nd generation running relaxes slightly the bounds obtainable from a comparison

of the computed value of b → s γ with the experimental measurement at relatively low

m1/2(∼ 400 GeV). As long as we fix the relation between cd22 and ǫd through the fermion

masses, there will be little sensitivity of b→ s γ to ǫd.

The contribution of the charged Higgs to the Wilson coefficients, depends crucially on

xtH = m2
t/m

2
H− where mH− is the mass of the charged Higgs. The determination of mH−
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is quite sensitive to changes in the running of the supersymmetric spectrum [40] and thus

any change in the running of these parameters will affect the final value of mH− :

m2
H− = m2

A +M2
W + ∆2

H , ∆2
H =

−3g2
2

32π2

m4
tµ

2

sin4 βM2
W

f(M2
ũ1,ũ2

)

M2
ũ1

−M2
ũ2

, (6.14)

where mA is the pseudo-scalar Higgs mass and f(M2
ũ1,ũ2

) is a function of the lightest sups:

ũi for i = 1, 2. The running of µ is quite sensitive to the changes in the running of the

susy spectra and as a result m2
H− is also sensitive. Thus, when we include the running

of the second family, the added small changes to the supersymmetric spectrum alters the

final value of mH− .

We have tested the effect of the gluino contribution by computing the ratio, δg̃ =
K̂2

7eff

K̂2
7effg̃

,

where these quantities have been defined in eq. (A.8) and eq. (A.16) in appendix A. The

ratio is very close to 1 for m1/2 > 300 GeV. At lower gaugino masses, the contribution

from gluinos increases but the ratio only decreases by about 1% at m1/2 = 160 GeV. When

m1/2 is below 300 GeV, the stops become quite light and a NLO calculation is not possible

using the approximation of [17]. At lower m1/2, a LO calculation has to be used also for

charginos, charged Higgs and neutralinos. In fact when m1/2 ≤ 280 GeV this is the case.

Thus all the results for b→ s γ constrained to m1/2 ≤ 280 GeV are calculated at LO.

6.4 Constraints on the parameter ǫS

As we have pointed out in section 4, once a family symmetry is introduced, additional

contributions to the trilinear couplings are given by the derivatives of the Yukawa couplings

with respect to the flavon fields, ∼ Y f
ijF

α∂α, and then in a realistic flavour symmetry

(af )ij must be of the form of eq. (4.5) with kfij 6= 0. Given the limitation on the number

of parameters that we can use to scan the possibilities of the general form of eq. (5.7),

with coefficients xfij 6= 1 and zfij 6= cfij, we choose to analyze the matrices of the form

given in eq. (5.8), and hence effectively allowing ǫSf > ǫf . To remain consistent with the

approximations made earlier, we maintain the restriction ǫSu < ǫd.

To this end, we first check once more the running of the off-diagonal squared masses

and trilinear couplings with respect to the parameters ǫSf > ǫf . For the case of ǫSf = ǫf
we have seen in the discussion of section 6.1 (figure 1) that (M2

L̃
)23 and (M2

ẽ )23 are more

sensitive than the quark sector, other than (M2
d̃
)23. To be definite, we make the following

choices for ǫSf :

I. ǫSd = ǫSe = 0.45, ǫSu = 0.06,

II. ǫSd = 0.45, ǫSe = 0.225, ǫSu = 0.06, (6.15)

for both cases we keep cd22 = 0.7 and ǫd = 0.1, ǫu = 0.05. In figure 9, we plot then the

running of M2
Q̃ 23

, M2
ũ 23, M

2
d̃ 23

and M2
L̃ 23

for the two cases of eq. (6.15). These figures

can be compared directly with those in figure 1. The only difference being the increased

values of the expansion parameters which are now distinct from those in the Yukawa sector.

The running of M2
Q̃ 23

is significantly affected by the increase in ǫSd as one can see from

the comparison between figures 1a and 9a. This is largely due to the increased importance
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Figure 9: As in figure 1 for case I with ǫSd = ǫSe = 0.45, ǫSu = 0.06 (red dashed lines), and for

case II with ǫSd = 0.45, ǫSe = 0.225 and ǫSu = 0.06. (blue solid lines). Here m0 = 370GeV and

A0 = −m1/2.

of the a†dad term in the beta function which is now competing with the Yukawa terms in

eq. (6.1). Not surprisingly the running of M2
ũ 23 is quite close to that of figure 1b because

we have kept ǫSu = 0.06 quite close to ǫSu = 0.05. In order to affect the branching ratio

for b→ s γ, we are most interested in the effect on the d sector. The initial value of M2
d̃ 23

is determined by ǫSd (and m0) and is increased relative to the case studied in figure 1c by

the the ratio ǫSd/ǫd = 0.452/0.12 = 20.25. As a result, we can see in figure 9c the enhanced

running of M2
d̃ 23

. In panel d), we see the differences between cases I and II, as the running

of M2
L̃ 23

is clearly sensitive to ǫSe. In figure 10, we show the corresponding effect on the

trilinear couplings which can be compared directly with figure 2.

In figure 11, we show the effect of the increased ǫS on the parameters (δf,XY )ij defined
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Figure 10: As in figure 9 for the running of a) ad23 and b) ae32.

|(δf,XY )23| for (m1/2,m0, A0) = (520, 370,−520) GeV

I II

|(δL,LL
)23| 0.0012 0.15 0.014

|(δe,RR
)23| 0.0069 0.50 0.05

|(δe,LR
)23,32| 6.0 × 10−6 8.6 × 10−3 1.5 × 10−3

|(δe,RL
)23,32| 4.4 × 10−6 7.2 × 10−3 1.1 × 10−3

|(δQ,LL
)23| 0.0069 0.009 0.009

|(δd,RR
)23| 9 × 10−4 0.021 0.021

|(δd,LR
)23| 4.3 × 10−6 8.0 × 10−4 8.0 × 10−4

Table 2: Weak scale values for the |(δf,XY )23| (denoted in the 1st column) for (m1/2,m0, A0) =

520, 370,−520)GeV. In the 2nd column, we assume ǫSd = ǫd = 0.1, ǫSu = ǫu = 0.05. In column

three, we take ǫSd = 0.45, ǫSu = 0.06 and ǫd = 0.1, ǫu = 0.05 while in column four, we lower ǫSe to

0.225.

in eq. (6.6). The increased effect on the running of these parameters is also largely due to

the increase in the initial values. For example, for (δd,RR)23 the initial value is increased

from 9 × 10−3 to 0.021, when ǫd = ǫSd changes from 0.1 to ǫSd = 0.45. The comparison to

the increase for the other (δf,XY )23 is given in table 2.

If one would like to introduce right handed neutrinos for these cases, then the present

analysis will be valid assuming the right handed neutrinos decouple at a higher scale than

MGUT, or MνR
> MGUT. For MνR

< MGUT the quark sector will not be largely affected

but the lepton sector will be. We will have then important changes to the running of

(M2
L̃
)23 and (M2

ẽ )23. Since the goal in this paper is to study the constraints mainly in the

quark sector, the introduction of MνR
< MGUT is beyond the scope of the present work.

For the present case we consider constraints from leptonic flavour violating process such
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Figure 11: As in figure 9 for the running of (δf,XY )ij with f,XY = a) e,RR b) d,RR, c) Q,LL,

d) u,RR, e) d, LR, f) e, LR.

as τ → µγ. For example in the CMSSM, the bounds in terms of the flavour violating

parameters eq. (6.6), for tanβ = 50, are [41]

|(δL,LL)23| . 0.1, |(δe,RR)23| . 0.1, |(δe,LR)23,32| . 0.02, (6.16)

using the most stringent current bounds. For the case ǫSf = ǫf the values obtained for

(δl,XX)23 are well below these bounds:

|(δL,LL)23| = 0.0012, |(δe,RR)23| = 0.0069,

|(δe,LR)23| = 6.0 × 10−6, |(δe,RL)23| = 4.4 × 10−6. (6.17)

For case I of eq. (6.15) the bounds of eq. (6.16) are already saturated while for case II, the

parameters are still within the experimental limits.

As can be expected, the sensitivity of b → s γ on our expansion parameters for the

cases ǫdS > ǫd is greater than that discussed in the previous section with ǫdS = ǫd. The

value for the branching ratio for b → s γ as a function of m1/2 is shown in figure 12.

The lower two curves correspond to the single family case (where all mixings are ignored)

and our nominal choice of ǫSd = ǫd and are taken directly from figure 8. The upper two

curves show the effect of increasing ǫSd and ǫSe using values from case I (upper solid red

curve) and case II (green dot-dashed curve). Here we see more clearly that in regions with
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Figure 12: As in figure 8. The curves from bottom to top are as follows: the single family limit

is shown by the blue dashed curve; the choice of ǫd = ǫSd = 0.1 is shown by the black dotted

curve; increased mixing with ǫSd = 0.45, ǫSe = 0.225 is shown by the green dot-dashed curve; and

ǫSd = ǫSe = 0.45 is given by the red solid upper line.

relatively low m1/2, the effect of mixings relaxes the constraint imposed by b → s γ. In

these cases, the gluino contributions can be up to 10% for m1/2 around 200 GeV but when

m1/2 increases these contributions reduce considerably. Here the contribution from gluinos

does not vary too much from cases I and and II of eq. (6.15), as the running in the d̃ sector

is not greatly affected.

To better appreciate the effect of the mixing in the squark sector, we zoom in on the re-

gion between m1/2 = 300 and 800 GeV as shown in panel b) of figure 12. For tan β = 50, this

region is preferred when other observables such as (g−2)µ are included [33, 42]. When theo-

retical and calculational errors are included, the 95% exclusion value for BR(b→ s γ) occurs

at about 1.9 ×10−4, as discussed in the previous section and corresponds to a lower limit

of 400 GeV on m1/2 in the single family case most commonly treated in the CMSSM. This

limit is substantially relaxed when two-family mixing is included. For ǫSe = ǫSd = 0.45 as

shown by the upper curve in the figure, we see that the limit is relaxed to m1/2 & 335 GeV.

One should keep in mind that the exact numerical limit found here and in the CMSSM is

subject to change when NNLO SM corrections are included. On the other hand, we expect

the relative change in the limit when two-family mixing is included to be a robust result.

Finally, we show in figure 13 the behaviour of BR(b → s γ) on ǫSd for several choices

of m1/2. As one can see, for low m1/2, the branching ratio is lower than the experimental

value when ǫSd is small. When ǫSd & 0.4, the branching ratio increases and the constraint

on m1/2 is relaxed.

6.5 Sensitivity on the determination of the MSSM spectra

In this last section, we would like to consider the effects of the our flavour violating param-

eters on the resulting supersymmetric spectrum. Since the parameters ǫu, ǫd, ǫSu, ǫSe, ǫSd
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Figure 13: Variation of BR(b → s γ) with respect to ǫSd. From top to bottom the lines cor-

respond to (m1/2,m0, A0) = (600, 410,−600)GeV, (500, 360,−500)GeV, (400, 340,−400)GeV and

(300, 380,−300)GeV.

are small (< 1) and their dependence on the Yukawa, trilinear and soft squared matrices

is quadratic, eqs. (5.7), (5.8), we do not expect a big effect on the spectra, except for

sensitive parameters such as

µ, mH1,2, mA, (6.18)

which are determined from the electroweak symmetry breaking conditions. In figure 14,

we show the dependence of the six masses of the sdown sector and of the charged slepton

sector with respect to ǫSd for the case

ǫSe =
1

2
ǫSd, (6.19)

with ǫSu = 0.06 which includes case II of eq. (6.15) for ǫSd = 0.45. Here we have fixed

m1/2 = −A0 = 520 GeV, m0 = 370 GeV, and tanβ = 50. As one can see, only when

ǫSd & 0.35, does the splitting in the masses of the heaviest families (1st two generations)

become relevant. The third generation (mostly sbottom) masses are relatively insensitive

to ǫSd and are close to their CMSSM (with no flavour violation) values (Md̃1
,Md̃2

) =

(956, 1017) GeV as shown by the lower two (red) curves in figure 14a. where 1,2,. . . 5,6

are ordered lightest to heaviest. Analogously for the 3rd generation sleptons we have

(Mẽ1 ,Mẽ4) = (246, 477) GeV, in the CMSSM as shown by the two (red) curves in panel

b. Note that the heavier stau is heavier than the mostly right-handed selectron and smu.

With no flavour violation, the masses of the 1st two generations are degenerate (due to

the smallness of the associated fermion masses) in the CMSSM. Here we see the degree of

splitting induced when ǫSd 6= 0. We do not show the dependence of the of the sups with

respect to ǫSd or ǫSu because their change (with respect the running of just the third family)

is less than the 0.4%. We note, however, a more important difference in the determination
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Figure 14: Masses for the sdowns (a), and charged sleptons (b) sectors as a function of ǫSd for the

case (m1/2,m0, A0) = (520, 370,−520)GeV, ǫSe = ǫSd

2
, ǫd = 0.1, and ǫu = 0.05. In panel c, the soft

Higgs masses, µ and mA are shown as labeled.

of the running Higgs sector parameters which is displayed in panel c of figure 14. When

ǫSd = 0, we have (µ,mH1 ,mH2 ,mA) = (568,−403,−708, 516) GeV at the electroweak scale,

where mHi
are the two soft Higgs masses, and the minus refers to the sign of the squared

mass. For ǫSd = 0.45 these become (µ,mH1 ,mH2 ,mA) = (545,−465,−688, 452) GeV. Since

the most important supersymmetric contribution to BR(Bs → µ+µ−) scales as f2
Bs
/m4

A

and in the analysis that we have done the inclusion of the second family tends to lower mA,

we expect that in general BR(Bs → µ+µ−) increases from the case ǫSd = 0 to ǫSd = 0.45,

but remains within the experimental limit.

7. Summary

Flavour symmetries (FS) are often constructed using supersymmetry. Departures from

MFV will affect the supersymmetric spectra and constraints at the electroweak scale can

be employed to determine the profile of the Yukawa matrices at the GUT scale. Flavour

violating processes then can be used to further constrain the shape of such Yukawa matrices

and the parameters associated with the FS.

Clearly, a completely general analysis is not practical for computational purposes, as it

involves many new supersymmetric parameters in addition to the Yukawa matrices. To con-

strain the parameters of the latter we can rely on the determination of the Yukawa matrices

at MEW from flavour violating parameters in the SM, assuming a hierarchical symmetric

form, eq. (3.1) (although in this context a non-symmetric form is equally plausible, it re-

quires more parameters) such that the expansion parameter in the up sector is smaller than

in the down sector, motivated by the different hierarchies between up and down quarks

respectively, ǫu ∼ ǫ2d. For the latter case we can simplify the usual relations obtained in FS

between the expansion parameters of the Yukawa matrices and the off-diagonal parameters

of the trilinear couplings and soft squared mass matrices at the GUT scale.

In our analysis, we used an iterative procedure as is common in the analysis of the

CMSSM [28, 29], with the inclusion of three more parameters describing the Yukawa matri-

ces (ǫu, ǫd and cd22), at the GUT scale. Other necessary inputs are the values of ms(2GeV),
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mc(2GeV), mµ(MEW), and the values of the CKM matrix relevant to the two heaviest

families. These are used to determine seven more parameters in the Yukawa sector at the

GUT scale, as in eq. (5.2).

The important results of this analysis in the fermion sector are as follows. First, using

the supersymmetric corrections to the fermion masses of the two heaviest families, at the

EW scale, we can accurately determine the profile of the Yukawa matrices at the GUT scale.

Particularly important is the ratio (Yd)23(MGUT)/(Yd)22(MGUT). Whereas in an analysis

where the running of supersymmetric parameters is neglected, this ratio is found to be

1.3, when supersymmetric corrections are taken into account, this ratio is enhanced to 1.8,

cf., eq. (6.12). Second, the value of the expansion parameter, ǫd, is effectively constrained

by the appropriate determination of ms(MEW), with its corresponding supersymmetric

corrections. Of course the exact value depends on the values for the coefficients used

in the expression of the Yukawa matrices, for example (Yd)22 = cd22ǫ
2
d. Assuming that

the coefficients cdij should be of order one, we find for example that for cd22 = 0.7, ǫd ∈
[0.085, 0.10], otherwise ms is predicted to be either too small or too big, respectively.

This determination is important when constructing FS. The exact values of (Yf )ij(MGUT)

are used to justify different choices of family groups (e.g. SU(3), SO(3)). We have only

considered the running of the two heaviest families and hence the structure of the lightest

family cannot be determined at the GUT scale by this analysis. However, the inclusion of

the lightest family will not have a strong impact on the results obtained here.

Our results are also relevant for the supersymmetric sector. When off-diagonal terms

are introduced in the sfermion mass matrices or trilinear terms at the GUT scale, departures

from MFV are induced at the EW scale. In the most constrained models, ie., when no

new parameters are introduced as in eq. (5.7), this departure is small and the resulting

sensitivity of BR(b → s γ) is not significant. In contrast, when the expansion parameters,

ǫSf , for the supersymmetric sector differ from that of the fermion sector, ǫf , we may obtain

more sizable departures from MFV. We have compared the running of the off-diagonal

trilinear couplings and soft squared mass matrices for these two possibilities.

Our calculations were performed using the values of the supersymmetric parameters

as obtained when running the full MSSM, with the simplified structure for the trilinear

couplings and soft squared masses at two loops as described above. Hence we do not rely

on estimating the value of the flavour violating parameters (δfXY
), eq. (6.6), at the EW

scale. Indeed, these are calculated directly in terms of the parameters introduced at the

GUT scale as an extension of the CMSSM. These parameters were introduced in section 6.1

to emphasize their running from MGUT to MEW. Current limits on the charged slepton

sector could be used to further constrain the choice of the expansion parameters ǫf and ǫSf .

We have seen that the running of (δfXY
)23 is quite limited when initial conditions at

the GUT scale are constrained. This is true for both the case of MFV at the GUT scale as

well as the case when the expansion parameters of the supersymmetric sector differ from

those of the fermion sector, ǫSf 6= ǫf , as we saw from table 2. In column 2 of that table,

we have assumed MFV at the GUT scale and the departures from MFV at the weak scale

are small as seen by the small values of the δ-parameters. In this case, the bounds on the
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parameters (δ(e,L)XY
)23 are well below the bounds imposed by BR(τ → µγ) in eq. (6.16).

However, if we take for example ǫSd = ǫSe = 0.45, we can see that the values obtained for

(δ(e,L)XY
)23 in column 3 already saturate the bounds imposed by BR(τ → µγ). In the last

column, we showed the δ’s when ǫSd = 0.45 and ǫSe = 0.225 where the bounds imposed by

BR(τ → µγ) are satisfied.

We have linked the down-type quarks to the charged leptons by generating the off-

diagonal terms of the Yukawa matrices of both with VCKM at EW scale as in eq. (5.3).

This is motivated by GUT theories where often charged leptons and down-type quarks

acquire Yukawa matrices of the same form. Extending the relation to the supersymmetric

sector, by taking the expansion parameters ǫSd and ǫSe to be of the same order, we naturally

find that the parameters |(δ(Q,d)XY )23| and |(δ(L,e)XY )23| are correlated at EW scale. From

table 2, we see that for ǫSd = ǫSe we have in fact |(δ(Q,d)XX)23| = O
(
|(δ(L,e)XX)23|

)
.

Applying the bounds on |(δ(L,e)XX)23| imposed by BR(τ → µγ), we have taken ǫSe =

0.5ǫSd = 0.225 and this effectively decreases |(δ(L,e)XX)23| by an order of magnitude with

respect to |(δ(Q,d)XX)23|.
Finally, we have calculated BR(b → s γ) at NLO for the charged Higgs, chargino and

neutralino contributions and at LO for the gluino contributions (since a NLO computation

is not yet fully available for this case). BLO corrections for the gluino contributions were

considered in [19], but given the values of (δf,XY
)23 that we have derived, these corrections

will have little impact on the value BR(b → s γ) that we obtain.

Given the SM NNLO computation and the continuously improved experimental value,

it is important to determine BR(b → s γ) as precise as possible in a given supersymmetric

model. We have seen that the structures for Yukawa matrices, trilinear terms and soft-

matrices of the form of eqs. (5.7), (5.8) yield a positive contribution to the calculation of

BR(b → s γ) for µ > 0 bringing the branching ratio closer to its experimental value than

what would have been obtained in the absence of any FV. In fact when ǫSf 6= ǫf , such that

ǫSd > ǫd > ǫSu > ǫu, it is possible to relax the lower limit of ∼ 400 GeV on m1/2 found in

the single family case most commonly treated in the CMSSM. For ǫSe = ǫSd = 0.45 this

limit is relaxed to m1/2 & 335 GeV, as we have discussed in section 6.4.

A. b → sγ beyond minimal flavour violation

At LO the renormalization evolution of the gluino contribution to the effective Hamiltonian,

Heff , from MEW down to µb is different than the contribution from W−, H−, charginos

and neutralinos [14]. Hence, Heff can be written as:

Heff = HW−, H−, χ
eff + Hg̃

eff . (A.1)

“Mixed” diagrams containing the W boson, gluinos and squarks give rise to αs corrections

to the Wilson coefficients in HW−, H−, χ at the matching scale, and they are taken into

account at the NLO level. We include the contributions of gluinos at LO and those from

H−, charginos and neutralinos at NLO.
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We recall that the starting point in the calculation of inclusive B decay rates is the

low-energy effective Hamiltonian [20]

HW−, H−, χ
eff = −4GF√

2
V ∗

tsVtb

∑

i

Ci(µb)Oi(µb) . (A.2)

In the massless strange quark limit, the operators relevant to our discussion are

O2 = s̄LγµcLc̄Lγ
µbL ,

O7 =
emb

16π2
s̄LσµνF

µνbR ,

O8 =
gsmb

16π2
s̄LσµνG

µν
a tabR . (A.3)

To an excellent approximation, the contributions of other operators can be neglected.

The renormalization scale µb in (A.2) is conveniently chosen of order mb, so that all large

logarithms reside in the Wilson coefficient functions. However when the mass of the strange

quark is taken into account we need to consider the operators

O′
7 =

emb

16π2
s̄RσµνF

µνbL ,

O′
8 =

gsmb

16π2
s̄RσµνG

µν
a tabL . (A.4)

For these operators the corresponding Wilson coefficients C̃H
− ∝ msmb/m

2
t tan2 β and

C̃χ
±

are quite small. For Hg̃
eff we have

Hg̃
eff =

∑

i

Ci,g̃(µb)Oig̃(µb) +
∑

i

C ′
i,g̃(µb)O

′
ig̃(µb) +

∑

i

∑

q

Cqi,g̃(µb)O
q
ig̃(µb), (A.5)

where q runs over the light quarks q = u, d, c, s, b. The operators Oi,g̃(µb) can be of two

types, one forOj b,g̃(µb) and the other forOj g̃,g̃(µb), j = 7, 8. The former can be found from

eq. (A.3) with the substitution of (1/16π2) with g2
s and the latter with the substitution of

(mb/16π
2) with g2

s . The primed operators in eq. (A.5) come from the interchange of L↔ R.

The operators Oqig̃(µb) are suppressed with respect to the magnetic operators by the mass

of the corresponding quark or by an extra power of gs. We neglect them here since their

contribution is quite tiny with respect of the operators in the first two terms of eq. (A.5).

In the SM, the complete theoretical prediction for the B → Xsγ decay rate at NLO was

presented for the first time by Chetyrkin et al. [21]. It depends on a parameter δ defined

by the condition that the photon energy be above a threshold given by Eγ > (1− δ)Emax
γ ,

where Emax
γ = mb/2 is the maximum photon energy attainable in the parton model. Thus,

δ = 1 − 2Emax
γ /mb, and we use Emax

γ = 1.6 GeV, as it is the value at which the HFAG

collaboration has presented its latest results [9, 10].

The prediction for the B → Xsγ branching ratio is usually obtained by normalizing

the result for the corresponding decay rate to that for the semileptonic decay rate, thereby

eliminating the strong dependence on the b-quark mass:

BR(B → Xsγ)
∣∣

Eγ>(1−δ)Emax
γ

= BR(B → Xceν̄)exp

Γ(B → Xsγ)|Eγ>(1−δ)Emax
γ

Γ(B → Xceν̄)
. (A.6)
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Following closely the formalism of [22, 23], we write

BR(B→Xsγ)
∣∣
Eγ>E0=BR(B → Xceν̄)exp

∣∣∣∣
V ∗

tsVtb

Vcb

∣∣∣∣
2 6αem

π
[P (E0) +N(E0)]

1

r(Γu/Γc)
(A.7)

where perturbative, P (E0), and non-perturbative, N(E0), contributions are treated sepa-

rately, and E0 = (1−δ)Emax
γ . The function N(E0) is a correction which does not depend on

the renormalization of the running mass mb from µEW to mb, it contains power corrections

that arise from the interference between the current-current operator and the magnetic

dipole operator, hence called the “non-perturbative” contribution. The precise definition

is given in eq. (3.10) of ref. [22]. In the SM this is [22], N(E0 = 1.6 GeV) = 0.0036±0.0006.

The ratio r(Γu/Γc) is a semileptonic phase space factor which is independent of the cal-

culational problem of convergence of the perturbation series in b → Xsγ. This has been

calculated accurately [22] up to NNLO in the SM.

Since BR(B → Xceν̄) is an experimental input, only the function P (E0) has contribu-

tions from processes beyond the SM. Using the approach of Gambino et. al. [22], rather

than writing the terms P (E0) + N(E0) as functions of the standard Wilson coefficients,

eq. (A.2), at the decay scale, µb, these functions can be written in terms of functions involv-

ing the renormalization effects from µ0 (mt or µEW ) to µb and the Wilson coefficients at µ0.

The contributions from the charm quark do not get re-normalized from MEW to mb, while

the contributions from t do. Hence instead of the familiar contribution of |Ceff
7 (µEW)|2 to

BR(B → Xsγ), we have

|Ceff
7 (µb)|2 → K̂2

7eff ≡ P (E0) +N(E0)

P (E0) = |Xc +Xt + ǫEW|2 +B(E0), (A.8)

where Xc and Xt represent the c and t contributions respectively, ǫEW is an electroweak

correction and B(E0) is the bremsstrahlung correction from b → sγg and b → sγqq̄ with

q = u, d, s [23].

Analogous to the usual Wilson coefficients, we can decompose

Xf (µb) = X
(0)
f (µb) +

αs(µb)

4π
X

(1)
f (µb), f = c, t. (A.9)

The effects of physics beyond the SM can be incorporated [23] as:

C
(0)TOT
i (µEW) = C

(0)SM
i (µEW) + C

(0)BSM
i (µEW), i = 7, 8, (A.10)

where C
(0)SM
i (µEW) = C(0)eff (µEW)i, i = 7, 8 correspond to the coefficients of eq. (12)

of [21], i.e. the scheme independent Wilson coefficients, the coefficients C
(0)BSM
i (µEW)

of course refer to processes beyond the SM, in this case the MSSM. From here on, we

will refer to the following coefficients C̃
(0)
7 (µEW) = C

(0)TOT
7 (µEW) + 23

36 and C̃
(0)
8 (µEW) =

C
(0)TOT
8 (µEW) + 1

3 . For the MSSM, the general form for C
(0)MSSM
i (µEW) is known, al-

though the contribution from gluinos does not follow the same pattern of renormalization

from MEW to mb and it should be implemented in a different fashion. The contribution
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from charginos, neutralinos and charged Higgs bosons can be renormalized as in the SM,

although the complete NLO corrections to CMSSM
i=7,8 (µb) are not known.

Thus, if we have the following hierarchy of masses

µSUSY ∼ O(mg̃,mq̃,mt̃1
,mt̃2

) ≫ µEW ∼ O(MEW,mt,mH±) ≫ µb, (A.11)

we expect that the following assumptions represent a first good approximation for taking

into account the contribution from charginos, neutralinos and charged Higgs bosons:

C̃
(0)
i = C̃

(0)SM
i + C

(0)χ,H±

i , i = 7, 8. (A.12)

We note that C
(0)g̃
7 (µb) must be added on directly to X

(0)
t (µb) because gluinos undergo a

different renormalization from MEW to µb. The expressions that we use for C
(0)χ,H±

7,8 and

C
(0)
g̃ are given in eqs. A16-A20 of [24]. At NLO for C̃XH

±

7,8 , we follow the approach of [17].

Thus at LO, eq. (A.8) would receive the following contributions from gluinos at µb:

P (E0)g̃ =
∣∣∣X(0)

g̃ (µb) +Xc(µb) +Xt(µb) + ǫEW

∣∣∣
2
+
∣∣∣X(0)′

g̃ (µb)
∣∣∣
2
+B(E0), (A.13)

where

X
(0)
g̃ (µb) = −16

√
2π3αs(µb)

GFVtbV
∗
ts

[
C

(0)
7b,g̃(µb) +

1

mb
C

(0)
7g̃,g̃(µb) +

mc

mb
C

(0)
7c,g̃(µb)

]
, (A.14)

and X
(0)′

g̃ (µb) is the analogous contribution from the primed operators (of flipped chirality

L ↔ R ) of eq. (A.5). The bremsstrahlung function B(E0), also receives gluino contribu-

tions [23], which are added to the Wilson coefficients at µb

C
(0)TOT
i (µb) = C

(0)SM
i (µb) + C(0)χ,H±

(µb) +X
(0)
g̃ (µb), i = 7, 8, (A.15)

the contribution from BSM processes to the rest of the Wilson coefficients, i = 1, . . . , 6,

is negligible. We will denote by K2
7effg̃ the contribution to BR(b → s γ) containing the

Wilson operators from gluinos:

K̂2
7effg̃ ≡ P (E0)g̃ +N(E0). (A.16)

As stated before we have implemented the calculation of BR(b → sγ) as introduced

in [22], and adopted in [23] for the contribution of beyond SM effects. The main dif-

ference in the way BR(b → sγ) is calculated in the SM as introduced in [22], with

respect to previous analyses is that mpole
c /mpole

b is replaced by mM̄S
c (mc)/m

pole
b in the

element 〈Xsγ|(s̄c)V −A(c̄b)V−A|b〉. In addition, the running of the charm and top contri-

butions from the EW scale to the decay scale µb is different. In table 3, we compare

the values obtained in our calculation for the different choices of mpole
c /mpole

b = 0.22 and

mM̄S
c (mc)/m

pole
b = 0.3003. Lines 1 to 5 correspond to the calculation of BR(b → s γ)

implemented here following [22]. Line 5 is the SM value that we obtain in the decoupling

limit. Line 4 is what we obtain when using the top mass assumed in [22], and is in perfect

agreement with the value obtained there (eq. (4.14) of that reference). Line 3 corresponds

to the SM when δ = 0.9 shown for comparison to other works. Lines 1 and 2 assume

mpole
c /mpole

b = 0.22 for two values of mt. The remaining parameters for the calculation

of BR(b → s γ) that we use and that were not specified before are BR(B → Xceν̄)exp

= 0.1059,
∣∣∣V

∗
tsVtb

Vcb

∣∣∣
2

= 0.97 and µb = 5 GeV.
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BR(b → s γ) for the SM

mt Eγ
mc

mb
BR(b → sγ)[10−4]

174.3 GeV 1.6 GeV 0.3003 3.32 ± 0.19

171.4 GeV 1.6 GeV 0.3003 3.27 ± 0.19

171.4 GeV 0.2345 GeV 0.22 3.71 ± 0.20

174.3 GeV 1.6 GeV 0.22 3.61 ± 0.20

171.4 GeV 1.6 GeV 0.22 3.59 ± 0.20

Table 3: Input values for the evaluation of BR(b → sγ). For these cases, we have used αs(mZ) =

0.1185. The value of Eγ = 0.2345GeV corresponds to δ = 0.9. The error quoted is just the

parametric error.

B. Interactions of fermion, sfermions and sparticles

B.1 Quarks-squarks-gluino interactions

The interaction between quarks-squarks and gluinos is described by the Lagrangian:

−Lq−q̃−g̃ =
√

2gsT
a
αβ

[
−q̄′αi PLg̃aq̃′

β
Ri + q̄αi PRg̃aq̃βLi + h.c

]
, (B.1)

in the electroweak-color basis, where PR,L = (1 ± γ5)/2, a is the gluino color index, α, β

are the quark-squark color indices and i is the generation index. In the gauge basis, the

couplings at the quark-squark-gluino vertex are given by, for incoming gluinos to sfermion-

fermion, Cg̃f̃(2l−1)(f
′
L
)l

= −ig3
√

2T = −i 2√
3
g3. In this basis the effective mass Lagrangian

that we construct from the soft Lagrangian of eq. (2.1) is

Leff
mq̃

= −(q̃′L, q̃
′
R)i(M2

q̃′)ij

(
q̃
′∗
L

q̃
′∗
R

)

j

, (B.2)

where

(M2
f̃
)ij =

[
M2

LL M2†
LR

M2
LR M2

RR

]

ij

=




(M2

Q̃
)ij + (M2

f )ij +Df
L −(af ijvf + µ tanp β(Mf )ij)

−
(
a∗f ijvf + µ tanp β(M∗

f )ij

)
(M2

f̃R
)ij + (M2

f )ij +Df
R





Df
L,R = cos 2βM2

Z

(
T 3
f −QfL,R

sin2 θW
)
, p =

{
1, f = d

−1, f = u.
(B.3)

In eq. (B.3) i, j = 1, 2, 3 are the family indices, and (Mf )ij are the non-diagonalized fermion

mass matrices. We recall that in the eigenmass formalism all the interactions are com-

puted with the particles that are mass eigenstates. Hence the effective soft mass matrix

of eq. (B.2), with the corresponding family elements eq. (B.3), needs to be rotated where

the fermions are mass-eigenstates, i.e. to the so-called super CKM (SCKM) basis. For the

diagonalization of fermions we adopt the convention

(uL,R)i = (V u†
L,R)ij(u

′
L,R)j , (dL,R)i = (V d†

L,R)ij(d
′
L,R)j , → VCKM = V u†

L V d
L , (B.4)
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and thus the sfermions must be rotated similarly:

(ũL,R)i =
(
V u†
L,R

)

ij

(
ũ′L,R

)
j
,
(
d̃L,R

)

i
=
(
V d†
L,R

)

ij

(
d̃′L,R

)

j
. (B.5)

Then the soft mass matrix eq. (B.3) becomes

(
MSCKM

f̃

)2

ij
=

[
MSCKM2

LL MSCKM†2
LR

MSCKM2
LR MSCKM2

RR

]

ij

≡
(
M̂2

f̃

)

ij

=




(
V fT
L M2

Q̃
V f∗
L

)

ij
+M̂2

fi
+Df

L −
((
V fT
L afV

f∗
R

)

ij
vf + µ∗ tanp βM̂fi

)

−
((
V f†
L (a∗f )ijV

f
R

)
vf + µ tanp βM̂fi

) (
V fT
R M2

f̃R
V f∗
R

)

ij
+M̂2

fi
+Df

R


,

(B.6)

where Df
L,R remain diagonal, and M̂f is the diagonal matrix of the f type fermions. The

sources of flavour violation then come from
(
MSCKM2

Q̃

)

ij
=
(
V fT
L M2

Q̃
V f∗
L

)

ij
(
aSCKM
f

)
ij

= −
(
V fT
L afV

f∗
R

)

ij(
MSCKM2

f̃R

)

ij
=
(
V fT
R M2

f̃R
V f∗
R

)

ij
, (B.7)

which are not generically diagonal in the SCKM basis. For the case of 1 family the matrix

(MSCKM
f̃

)2ij is the usual 2 × 2 soft mass matrix whose diagonalization is obtained through

[
f̃L, f̃R

] [MSCKM2
LL MSCKM†2

LR

MSCKM2
LR MSCKM2

RR

][
f̃∗L
f̃∗R

]
=
[
f̃L, f̃R

]
K†
[
M2
f̃1

M2
f̃2

]
K

[
f̃∗L
f̃∗R

]
, (B.8)

where then the sfermion mass eigenstates, q̃i are defined by
[
f̃L
f̃R

]
= KT

[
f̃1

f̃2

]
. (B.9)

Analogously for three families, we have

M̂2†
f̃

=




(M̂2
f̃
)11 (M̂2

f̃
)12 (M̂2

f̃
)13

(M̂2
f̃
)†12 (M̂2

f̃
)22 (M̂2

f̃
)23

(M̂2
f̃
)†13 (M̂2

f̃
)†23 (M̂2

f̃
)33


 , ũ′ =




ũL
ũR
c̃L
c̃R
t̃L
t̃R




, d̃′ =




d̃L
d̃R
s̃L
s̃R
b̃L
b̃R




. (B.10)

Hence the effective soft mass matrix (M̂2
f̃
)ij is a 6 × 6 matrix, and the electroweak eigen-

states and mass eigenstates are related through

f̃ ′ =
(
Kf
)T

f̃ , (B.11)
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f ′ and f here are column vectors. The primed states are the eigenstates of the Lagrangian

in the gauge basis and the unprimed in the mass eigenbasis. Using the above definition of

eq. (B.9) and eq. (B.11) the couplings of the mass eigenstates involved in gaugino/ sfermion

vertex in terms of the gauge eigenstates are given as follows

Cg̃f̃∗j (fL)k
= Kf∗

j(2k−1)Cg̃f̃ ′∗
(2k−1)

(f
′

L
)k
, Cg̃f̃∗j (fR)k

= Kf∗
j(2k)Cg̃f̃ ′∗

(2k)
(f

′

R
)k
. (B.12)

We are working in the basis where Yu is diagonal at the GUT scale. At the EW scale

two loop corrections will make it non-diagonal but due to the smallness of the expansion

parameter ǫu, we are neglecting this contribution. Then VCKM = V d
L , contrary to the

convention used in many other papers (e.g. [14, 19]) where Yd is taken to be diagonal

at the EW scale. Hence the couplings of fermions and sfermions to other supersymmetric

particles must be defined accordingly. These couplings are given in the next two appendices.

B.2 Quarks-squarks-neutralino interactions

The interaction between quark-squark and neutralinos it is described by the Lagrangian,

in the mass eigenstate basis, by:

−Lq−q̃−χ̃0 = d̃j d̄k

[
C
χ̃o

i d̃j(d
†
L
)k
PL + C

χ̃o
i d̃j(d

†
R

)k
PR
]
χoi

+d̃†kχ
o
i

[
C†
χ̃o

i d̃j(d
†
L
)k

PR + C†
χ̃o

i d̃j(d
†
R

)k

PL
]
dj , χoi =

[
χ̃oi , χ̃

o
i

]
. (B.13)

The mass Lagrangian is given by L = −1
2 ψ̃

0NN †Mψ̃0N∗NT (ψ̃0)T + h.c., where the

gauge eigenstates are ψ̃o = [−ib̃,−iw̃, h̃d, h̃u], for h̃1,2 = h̃d,u. The mass matrix of

neutralinos is diagonalized by Mχ0 = N †Mψ̃0N∗, and hence the mass eigenstates, χ0
i , are

given by χ̃0
i = (ψ̃0N)i.

The couplings of incoming neutralinos to sfermion-fermion in the gauge basis,

eq. (B.13), can be identified from those of eq. (D20) in [39] as Cψ̃o
i f̃

′
(p)

(f ′
R

)m
= aψ̃o

i f̃
′
(p)

(f ′
R

)m
,

and Cψ̃o
i f̃

′
(p)

(f ′
L
)m

= bψ̃o
i f̃

′
(p)

(f ′
L
)m

, for p = L,R. Then the coupling at each vertex in the basis

of mass eigenstates can be written as −i(CuR
PL + CuL

PR) and −iC−1(CdR
PL + CdL

PR),

for up and down quarks respectively. CfR
is any coupling involving a right-handed fermion

state, for example Cχ̃o
i f̃j(fR)m

. Then the couplings of the mass eigenstates involved in

neutralino or chargino/ sfermion loops in terms of the gauge eigenstates are given as

Cu
ijk = C

χ̃o
i ũ

†
j(uR)k

=

[
N∗

1iK
u
j(2k)

(
g1√
2

)
YuR

+N∗
4iK

u
j(2k−1)Ŷ

u
kk

]

Du
ijk = C

χ̃o∗
i ũ†j(uL)k

=

[
N1iK

u
j(2k−1)

(
g1√
2

)
YuL

+N2iK
u
j(2k−1)(

√
2gIuL

3 ) + N4iK
u
j(2k)Ŷ

u
kk

]

Cd
ijk = C

χ̃o
i
d̃j(d

†
R

)k
=

[
N∗

1iK
d
j(2k)

g1√
2
YdR

+N∗
3iK

d
j(2k−1)Ŷ

d
kk

]

Dd
ijk = C

χ̃o∗
i d̃j(d

†
L
)k

=

[
N1iK

d
j(2k−1)

g1√
2
YdL

+N2iK
d
j(2k−1)

√
2gIdL

3 +N3iŶ
d
kkK

d
j2k

]
(B.14)
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B.3 Quarks-squarks-chargino interactions

The quarks-squarks-chargino interactions are given by

−Lq−q̃−ψ̃± = ũj d̄k

[
C
χ̃−c

i ũj(d
†
L
)k
PL + C

χ̃+c
i ũj(d

†
R

)k
PR
]
χci

+ũ†kχ
c
i

[
C†
χ̃−c

i ũj(d
†
L

)k

PR + C†
χ̃+c

i ũj(d
†
R

)k

PL
]
di

+d̃j ūk

[
C
χ̃−c

i d̃j(u
†
L
)k
PL + C

χ̃+c
i d̃j(u

†
R

)k
PR
]
χci

+d̃†kχ
c
i

[
C†
χ̃−c

i d̃j(u
†
L
)k

PR + C†
χ̃+c

i d̃j(u
†
R

)k

PL
]
uj, χi =

[
χ+
i , χ

−
i

]
. (B.15)

The mass Lagrangian is given by L = −1
2

[
ψ̃+V V +Mψ̃+U∗UT (ψ̃−)T + ψ̃−MT

ψ̃+(ψ̃+)T
]
,

where ψ̃+ = [−iw+, h̃+
u ], ψ̃− = [−iw−, h̃−d ], h̃1,2 = h̃d,u. The mass matrix is diagonalized

by Mχ̃± = V +Mψ̃+U∗ = U+MT
ψ̃+
V ∗, hence the rotation to chargino mass eigenstates is

χ̃+ = (ψ̃+
1 , ψ̃

+
2 )V , χ̃− = (ψ̃−

1 , ψ̃
−
2 )U .

The couplings of incoming charginos to sfermion-fermion in the gauge basis can also

be identified to those of eq. (20) of [39]. Using the transformations described in this section

to go to the eigenmass basis we have

Au
ijk = Cχ̃+

i d̃
∗
j (uL)k

= V ∗
2i

3∑

n=1

[
Kd∗
j(2n−1)

(
V †

CKM

)

nk

(
−Ŷ u

kk

)]

Bu
ijk = Cχ̃−c

i d̃∗j (uR)k
=

3∑

n=1

[
U1iK

d∗
j(2n−1)

(
V †

CKM

)

nk
g + U2iK

d∗
j(2n)

(
−Ŷ d

nn

)(
V †

CKM

)

nk

]

Bd
ijk = C

χ̃+c
i ũj(d

†
R

)k
=

3∑

n=1

[
V2iK

u
j(2n)

(
V †

CKM

)

kn

(
−Ŷ unn

)
+ gV1iK

u
j(2n−1)

(
V †

CKM

)

kn

]

Ad
ijk = C

χ̃−
i ũj(d

†
L
)k

= U∗
2i

3∑

n=1

[
Ku
j(2n−1)

(
−Ŷ d

kk

)(
V †

CKM

)

kn

]
, (B.16)

where it is useful to remember than in this notation the components Kf
j(2n−1) are related

to left-handed transformations and Kf
j2n with right-handed ones.
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